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Abstract
We investigate the equilibrium and out-of-equilibrium Kondo effects in a single-
level interacting quantum dot connected to two ferromagnetic leads. Within
the noncrossing approximation, we calculate the total density of states (DOS),
the linear conductance and the nonlinear differential conductance for both the
parallel and the antiparallel alignments of the spin polarization orientation in
the leads, followed by a brief discussion regarding the validity of this approach.
Numerical calculations show that, for the antiparallel alignment, a single
Kondo peak always appears in the equilibrium DOS, resulting in conventional
temperature behaviour in the linear conductance and the zero-bias maximum
in the differential conductance. The strength of the DOS peak is gradually
suppressed with increasing polarization, due to the fact that formation of the
Kondo-correlated state is more difficult in the presence of higher polarization.
In contrast, for the parallel configuration the Kondo peak in the DOS descends
precipitately and splits into two peaks to form a very steep valley between them.
This splitting contributes to the appearance of a ‘hump’ in the temperature-
dependent linear conductance and a nonzero-bias maximum in the differential
conductance. Moreover, application of a bias voltage can split each Kondo peak
into two in the nonequilibrium DOS for both configurations. Finally we point
out that the tunnel magnetoresistance could be an effective tool to demonstrate
the different Kondo effects in the different spin configurations found here.

1. Introduction

The discovery of the Kondo effect in a quantum dot (QD) connected to two normal reservoirs
has stimulated much experimental and theoretical interest in this many-body phenomenon [1],
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resulting in several novel findings,such as the splitting of the Kondo peak under nonequilibrium
conditions [2], an unusual enhancement of conductance in the cases when an even number of
electrons resides in a QD [3, 4] and double peaks of the differential conductance in coupled
double QDs [5, 6]. Recently, increasing attention has been paid, because of its potential
application in magnetoelectronics and quantum computing [7], to the spin-polarized electron
tunnelling through systems consisting of two ferromagnetic (FM) leads sandwiched by a QD,
which features a significant Kondo effect at low temperatures when it connects to normal
leads. Generally speaking, the Kondo resonance in the density of states (DOS) at the Fermi
energy originates from screening of the dot spin due to exchange coupling with the conduction
electrons. Therefore it is interesting to observe whether the Kondo-correlated state can form
when the conduction band is of spin polarization and, if so, what is the difference from the
conventional patterns.

In a recent paper, Sergueev et al [8] and Zhang et al [9] presented a theoretical analysis
of the transport characteristics of such a FM/QD/FM system, using the ansatz proposed by
Ng [10] and the standard equation-of-motion(EOM) technique for the retarded Green function.
They found that there is always a sharp single Kondo resonant peak in nonlinear differential
conductivity at zero bias, regardless of the polarization orientation of the two leads, parallel
(P) or antiparallel (AP) configurations. In contrast, Martinek et al [11] reported a markedly
different result for similar systems, based also on an EOM technique and an additional
assumption to replace the bare level of QD in the resultant self-energy expression with the
one self-consistently determined. They found that, for P alignment of the lead magnetizations,
the Kondo resonances in the DOS split for spin-up and -down electrons. Thus the differential
conductance exhibits a nonzero-bias maximum and the linear conductance drops to a low value
even with the polarization being as small as 0.2. Later on, Lü and Liu [12] also reported a
similar splitting by applying Ng’s ansatz. López and Sánchez [13] and Ma et al [14] employed,
respectively, the infinite-U slave-boson mean-field (SBMF) approach and the finite-U SBMF
approach [15, 16] to investigate the spin-polarized transport of this system and found drastically
different behaviours depending on the polarization alignment of the two leads. By using the
numerical renormalization group method, Choi et al [17] addressed the fact that the expected
splitting appears in the regime of charge fluctuations but disappears in the presence of sole
spin fluctuations. In view of the ongoing controversy, further analysis of the influence of spin
polarization on the Kondo-correlated state in a QD is desirable, preferably based on more
advanced schemes.

In this paper, we employ the noncrossing approximation (NCA) based on the auxiliary
boson technique to carry out a detailed analysis of the FM/QD/FM Kondo problem. The
NCA is a diagrammatic technique to sum all the noncrossing diagrams in the leading order
|V |2/N (where V is the hopping matrix element between the local electron and conduction
electrons and N is the number of the spin degeneracy of the local level) [18]. It is proved
to be an accurate approach for the case of N = 2 (of interest for a QD), even under out-
of-equilibrium conditions [19–21]. For a symmetric FM/QD/FM system considered in the
present paper, although the individual QD is exactly spin-degenerate, the spin-polarized leads
can lift this degeneracy in the case of P alignment through the tunnelling-induced spin-related
self-energies. However, if the spin polarization strength p of the two leads is small enough,
the self-energies are of weak spin dependence and, as a consequence, the NCA should be
adequate to treat this system. Actually, we calculate the equilibrium and nonequilibrium
transmissions for the FM/QD/FM system with a polarization strength as low as p = 0.2 for the
P configuration. Numerical results show a complete splitting for the equilibrium transmission
(DOS) and a nonzero-bias maximum for the voltage-dependent differential conductance,which
are in qualitative agreement with those of Martinek [11] and Lü [12].
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The rest of the paper is organized as follows. In section 2 we describe the model
Hamiltonian and give a brief description of applications of the infinite-U NCA to the spin-
dependent transport in FM/QD/FM systems, as well as a qualitative discussion about its validity.
In section 3 numerical computations and discussions are presented, including the equilibrium
and out-of-equilibrium DOS, the linear conductance and the nonlinear differential conductance,
for both the P and the AP polarization configurations. Finally, all the results are summarized
in section 4.

2. Model and formulation

The system Hamiltonian for a QD with a single spin-degenerate energy level εd (N = 2)
connected to two ferromagnetic leads is written as

H =
∑
η,k,σ

εηkσ c†
ηkσ cηkσ + εd

∑
σ

c†
dσ cdσ + Und↑nd↓ +

∑
η,k,σ

(Vησ c†
ηkσ cdσ + h.c.), (1)

where c†
ηkσ (cηkσ ) and c†

dσ (cdσ ) are the creation (annihilation) operators for electrons with
momentum k and spin σ in the lead η(=L, R) and for a spin-σ electron on the QD, respectively.
The third term describes the Coulomb interaction among electrons on the QD, which is assumed
to be infinite (U → ∞) in the present paper, forbidding double occupancy. The fourth term
represents the tunnelling coupling between the QD and the reservoirs via

�η
σ (ω) = 2π

∑
k

|Vησ |2δ(ω − εηkσ ), (η = L, R). (2)

In the wide band limit,�η
σ is assumed to be constant. For identical leads and symmetric barriers,

of interest in the present investigation, the ferromagnetism of the leads can be accounted for
by the polarization-dependent couplings �L

↑ = �R
↑ = (1 + p)�0 and �L

↓ = �R
↓ = (1 − p)�0

for the P alignment, with �L
↑ = �R

↓ = (1 + p)�0 and �L
↓ = �R

↑ = (1 − p)�0 for the AP
alignment. �0 and p (0 � p < 1) describe the tunnelling coupling between the QD and the
nonmagnetic leads and the polarization strength of the leads. Under this approximation, the
current I through the QD can be expressed in terms of the total transmission T (ω) as [22]

I = e

h̄

∫
dω [ fL(ω) − fR(ω)]T (ω), (3)

where

T (ω) =
∑

σ

�L
σ �R

σ

�L
σ + �R

σ

ρσ (ω), (4)

with ρσ (ω) = −(1/π) Im Gr
σ (ω) being the DOS for spin-σ electrons. Gr

σ (ω) is the Fourier
transform of the retarded Green function:

Gr
σ (t) = −iθ(t)〈cσ (t), c†

σ (0)〉. (5)

The main purpose of this work is to calculate the DOS ρσ (ω) as a function of temperature T ,
bare-level energy εd and bias voltage V for different polarization configurations and strengths
p and the associated linear and nonlinear conductance.

According to the infinite-U slave-boson approach, the ordinary electron operators on the
QD can be decomposed into a boson operator b and a pseudo-fermion operator fσ :

cdσ (t) = b†(t) fσ (t),

c†
dσ (t) = f †

σ (t)b(t),
(6)



8438 B Dong et al

with a constraint for the auxiliary operators b†b +
∑

σ f †
σ fσ = 1. In the slave-boson

representation, the Hamiltonian (1) for the FM/QD/FM systems becomes

H =
∑
η,k,σ

εηkσ c†
ηkσ cηkσ + εd

∑
σ

f †
σ fσ +

∑
η,k,σ

(Vησ c†
ηkσ b† fσ + h.c.). (7)

In order to evaluate the DOS ρσ (ω), Wingreen and Meier [20] generalized the NCA to study
the nonequilibrium properties of the Anderson model connected with two normal conduction
bands, using the Keldysh nonequilibrium Green function formalism. It is well known that
the NCA is a self-consistent conserving perturbation expansion for the pseudo-fermion and
slave-boson self-energies to first order in the effective coupling J = |V |2. At the lowest order
in perturbation diagrams the boson self-energy involves the bare fermion propagator while the
fermion self-energy involves the bare boson propagator. By replacing these bare propagators
with the dressed auxiliary particle propagators in the Feynman diagram, one can obtain a
set of coupled integral equations, which self-consistently determine the self-energies of these
auxiliary particles. Solving these coupled equations is equivalent to summing up a subset of
diagrams to all orders in J . Furthermore, it can be proved that the NCA includes all diagrams
of leading orders in 1/N [18]. Therefore, the NCA is expected to be a quantitative approach in
the limit of large N . For a QD connected with normal leads, N = 2, it is already proved to be
satisfactory in qualitatively describing the linear and nonlinear Kondo-type transport [20, 21].

Unfortunately, when the level degeneracy is broken, the NCA could produce spurious
peaks in the DOS and thus is unreliable for transport investigation. For example, as mentioned
by Wingreen [20], the NCA without vertex corrections produces an additional Kondo peak at
the chemical potential in a finite magnetic field due to a false self-interaction of each level,
whereas other methods find that the Kondo peak splits into two peaks. Similarly, the NCA
without vertex corrections seems also to be inappropriate for the FM/QD/FM systems, because
spin-related tunnelling lifts the level degeneracy in the QD. However, the present situation is
somewhat different from magnetotransport. The degeneracy lifting is evident in the presence
of a magnetic field, while it is dependent on the relative polarization orientation of the two
leads and, of course, the strength of polarization for the FM/QD/FM systems.

When the polarization orientations of the two FM leads is antiparallel, the self-energies are
actually independent of spin and the degeneracy remains as 2 for the case of the identical leads
and symmetric barriers. On the other hand, for the P configuration spin-related tunnelling
results in the self-energies to be different for spin-up and -down electrons. However, it is
natural that the deviation depends on the polarization strength p. Namely, the NCA could
still be reliable for the FM/QD/FM systems with small enough p. Numerical calculations
in the next section show that the conventional Kondo peak in DOS indeed splits completely
into two peaks at the polarization p = 0.2 for the P configuration. Even though one can
observe an additional peak located at the chemical potential but an order of magnitude smaller
than the two real Kondo peaks, these results are in agreement with previous predictions [11].
Consequently, this convinces us that the NCA provides an appropriate description for the
symmetric FM/QD/FM systems in either the AP alignment with arbitrary polarizations or the
P configuration with weak polarizations. Of course, this scheme’s validity being dependent on
the polarization p should be carefully checked, for example, by the modified NCA including
vertex corrections. This, however, entails numerically a much heavier task than the original
NCA and is beyond the scope of the present paper. We leave this examination to a future
publication.

We outline the formulation employed in this paper as follows. The interested reader
can refer to [20] and [21] for details. In the slave-boson representation, the retarded Green
functions for the boson and pseudo-fermions are defined as
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Dr(ω) = 1

ω − 
r(ω)
, (8)

Gr
f σ (ω) = 1

ω − εd − �r
f σ (ω)

, (9)

with the corresponding retarded self-energies 
r(ω) and �r
f σ (ω). Furthermore, the ‘lesser’

Green functions for the boson and fermions are related to the ‘lesser’ self-energies 
<(ω) and
�<

f σ (ω) as

D<(ω) = Dr(ω)
<(ω)Da(ω), (10)

Gr
f σ (ω) = G<

f σ (ω)�<
f σ (ω)Ga

f σ (ω). (11)

The self-consistent NCA equations for out-of-equilibrium are


r(ω) =
∑

η=L,R,σ

�η
σ

2π

∫
dε f (ε − ω − µη)Gr

f σ (ε), (12)

�r
f σ (ω) =

∑
η=L,R

�η
σ

2π

∫
dε f (ε − ω + µη)Dr(ε), (13)


<(ω) =
∑

η=L,R,σ

�η
σ

2π

∫
dε f (ε − ω + µη)G<

f σ (ε), (14)

�<
f σ (ω) =

∑
η=L,R

�η
σ

2π

∫
dε f (ε − ω − µη)D<(ε), (15)

where f (x) = [exp(βx) + 1]−1 (with β = 1/kBT )) is the Fermi distribution function and µη

is the chemical potential of the η lead. After solving this set of self-consistent equations, the
imaginary part of the retarded local Green function, the DOS ρσ (ω), can be calculated within
the NCA as

ρσ (ω) = 1

Z

∫
dε

2π
[D<(ε) Im Gr

f σ (ε + ω) + G<
f σ (ε) Im Dr(ε − ω)], (16)

where

Z =
∫

dε
[

D<(ε) +
∑

σ

G<
f σ (ε)

]
. (17)

Finally we can use equations (3) and (4) to calculate the current through the QD.

3. Numerical results and discussions

3.1. Density of state

In this section we present numerical calculations and discussions. First, we deal with the
total equilibrium and out-of-equilibrium DOS (transmission) equation (4) for the FM/QD/FM
systems with a fixed bare-level energy εd = −4.0 (�0 is used as the energy unit throughout
the rest of the paper). It is worth noting that the systems considered here belong to the deep
Kondo regime and are appropriate to demonstrate the strong correlated effects.

Figure 1(a) shows the total DOS in the AP configuration for several different polarizations
p = 0, 0.2 and 0.4 as well as various temperatures T = 0.01, 0.02 and 0.04. Clearly, a
significant Kondo peak remains at the Fermi energy (which is chosen to be the energy zero)
under the addition of the spin-polarized leads. The contribution of spin-polarized leads is to
suppress both the Kondo peak and the single-particle excitation peak (see the overall shapes
of the DOS in the inset of figure 1). This suppression is more pronounced with increasing
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Figure 1. (a) The total equilibrium DOS T (ω) in the AP
configuration for different temperatures T/�0 = 0.01,
0.02 and 0.04 and different polarizations p = 0, 0.2
and 0.4; and (b) the nonequilibrium DOS for T = 0.01
and p = 0.2. The QD in the FM/QD/FM system has a
single bare-level energy εd = −4.0 and an infinite on-site
Coulomb interaction U → ∞.

Figure 2. (a) The total equilibrium DOS in the P
configuration for different temperatures T/�0 = 0.01,
0.02, 0.04 and 0.06; and (b) the nonequilibrium DOS
for T = 0.01 and p = 0.2. The system is the same as
described in figure 1.

polarization p. These results are understandable with the aid of the following considerations.
Suppose that in the extreme case of two completely spin-polarized leads p = 1, spin-down
electrons are completely absent in the left lead, but electrons in the right lead are all spin-up
and could provide compensation to screen the dot spin and to guarantee the formation of the
Kondo-correlated singlet state. Thus the Kondo peak still exists with a reduced amplitude.
Naturally, the cases of weak polarizations p < 1 are more likely to form the Kondo state.
Note that increasing the temperature can broaden the peak and suppress the Kondo resonance
as usual. In addition, effects of the external bias voltage on the out-of-equilibrium DOS are
plotted in figure 1(b). For convenience, we choose a symmetric voltage drop such that the
chemical potential µL = −µR = eV/2 for the left and right leads. As expected, we find a
splitting of the Kondo peak with a width nearly equal to the bias voltage applied between the
source and drain leads.

In short, the QD connected with two AP magnetized leads develops the same Kondo
resonance as the QD with two normal leads, whereas the former is suppressed to some
extent, depending on the polarization p. In contrast, the situation is drastically different
for the P configuration as shown in figure 2, where we plot the total DOS for the polarization
p = 0.2 with various temperatures (a) and bias voltages (b). It is clear that the P polarization
significantly changes the DOS of the QD in comparison with the case p = 0. The Kondo
resonance splits into two distinct peaks with different amplitudes. One moves from the original
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location ω = 0, the Fermi energies of the two leads, to a lower energy position, while the other
shifts in the opposite direction at the expense of its height. Moreover the magnitudes of both
Kondo resonances are largely suppressed by the introduction of spin polarization. We observe
that there appears to be a remnant peak located at the Fermi energy, which is produced by
the NCA calculation without vertex corrections as mentioned above. But its amplitude is one
order smaller than the two shifted Kondo peaks and can be neglected. As a result, a very steep
valley is found between the two peaks with a nearly vanished bottom. Finally we find that
increasing the temperature can not only smooth and broaden the peaks as usual, but also raise
the bottom of the deep valley gradually, which can result in a peculiar temperature dependence
of the linear conductance, as shown in figure 3 (in the next subsection).

Figure 2(b) depicts the effects of changing bias voltage on the total DOS (transmission
probability) for the same system as in figure 2(a). If we keep the temperature low, T = 0.01,
and increase the bias voltage, the two resonances first experience suppression and then each
of them splits into two distinct peaks. Each pair of peaks has a width about equal to the bias
voltage. Increasing the temperature would eventually wash out the peak splitting and recover
a single but much less pronounced peak in both equilibrium and out-of-equilibrium cases.

3.2. Linear and nonlinear conductance

In figure 3 we plot the calculated linear response conductance G versus log T for various
polarizations p = 0, 0.1, 0.15 and 0.2. In the AP configuration (thin curve in figure 3)
the linear conductance GAP exhibits the similar overall temperature dependence to those of
nonmagnetic leads p = 0, though smaller in magnitude, resulting from the suppression of the
Kondo resonance as addressed in figure 1(a). For the opposite orientation, the conductance GP

depends strongly on the polarization strength p and exhibits no universal T behaviour at low
temperatures. Increasing p, GP is largely suppressed first and develops a ‘hump’ as a function
of temperature. This peak is due to the fact that the Kondo resonance is shifted away from
the Fermi energy as shown in figure 2(a). To demonstrate the dramatic change of conductance
under different polarization orientations, we plot the tunnel magnetoresistance (TMR) defined
as TMR = (GP −GAP)/GAP in the inset of figure 3. We find the TMR begins at a value as large
as 100% at the lowest temperature calculated in this work and falls rapidly with increasing
T , which can be attributed to the peculiar Kondo resonance in the P configuration. At high
temperatures GP approaches the value of nonpolarization p = 0, leading to a saturated and
small positive linear TMR.

Figure 4 shows the linear conductance as a function of bare-level energy εd, which can
be tuned via the external gate voltage, for nonpolarization p = 0, as well as the P and the AP
configurations with p = 0.2. As expected, GAP shows the same trend as that of nonpolarization
though a smaller amplitude. The peak of GP, however, shifts towards the Fermi energy. This
means that the linear TMR changes its sign at a certain level energy and has approximately a
symmetric shape around this point. Near the empty orbital regime εd � 0 and near the deep
Kondo regime εd � −4, the linear TMR reaches its maximum value as large as 30% at the
temperature T = 0.1.

Nonlinear differential conductance d I/dV is believed to be a very useful and sensitive tool
in experiments to detect the formation of the Kondo-correlated state due to its proportionality
to T (eV ) derived from the current formula equation (3), assuming that the total transmission
T (ω) (nonequilibrium DOS) is unchanged under the external bias voltage V . So we illustrate
in figure 5 the calculated d I/dV under the P (a) and the AP (b) configurations, as well as
the nonlinear TMR (c) at various temperatures. As pointed out above, because electrons with
spin-up and spin-down are equally available in the AP configuration, the formation of the
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Figure 3. The linear conductance G versus temperature
at different polarizations p for the same system as
described in figure 1. The thick curves correspond to
the results for the P alignment, while the thin curve is for
the AP alignment at p = 0.2. Inset: the calculated TMR
versus temperature for p = 0.2.

Figure 4. The linear conductance G and the TMR versus
the bare-level energy of the QD at T = 0.1.

Kondo-correlated state should not be affected. As a result, all the curves in figure 5(b) exhibit
a single zero-bias peak and rapid decrease in peak height with increasing temperature. When
the magnetization is rotated to the P alignment, adding bias voltage can greatly enhance dI/dV
at low temperatures. This is apparently due to the complete splitting of the Kondo peak in
the DOS shown in figure 2. The nonzero-bias maximum in d I/dV is in good agreement with
previous EOM calculations [11], except for the reduced width of splitting and the fine shape in
the differential conductance. These inconsistencies can be attributed to the significant change
of the nonequilibrium DOS with increasing bias voltage (see figure 2(b)). Furthermore, the
nonlinear TMR displays a large dip in the linear regime and changes its sign at a certain bias
voltage. This large change in the TMR versus bias voltage reflects the different behaviours of
the Kondo resonance in the P and the AP configurations.

4. Summary

We have investigated the low-temperature, nonequilibrium properties of a spin-valve system
consisting of a QD connected to two FM leads in the Kondo regime. Based on the NCA
approach we find markedly different behaviours in the equilibrium DOS when changing the
relative orientation of spin polarization. In the AP configuration, we find that a single Kondo
peak always appears through the whole range of polarization 0 � p � 1, just as in a QD
connected to two normal leads. Increasing polarization p can slightly suppress the amplitude
of the peak. In the P configuration, the Kondo peak decreases greatly and splits completely
into two peaks even for a weak polarization as low as p = 0.2, leading to a steep valley
with nearly a zero bottom. In both configurations the chemical-potential difference (the bias
voltage) appears in the DOS via the splitting of the Kondo peak into two peaks. Thus four
peaks can be found at a moderate bias voltage for the P alignment. Of course the amplitudes
of these peaks are suppressed by increasing temperature.

Experimentally, we predict, based on the NCA investigation, that the different Kondo
effects can be observed in transport through a QD by either linear or nonlinear measurements.
For the AP configuration, the calculations exhibit the usual temperature dependence of the
linear conductance and a zero-bias maximum in the nonlinear conductance, which are the
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Figure 5. The differential conductance dI/dV versus the bias voltage eV at different temperatures
T = 0.02, 0.04, 0.06 and 0.1 in the P (a) and the AP (b) configurations. (c) The nonlinear TMR
versus the bias voltage.

conventional properties of Kondo-dominated transport through a QD. For the P configuration,
however, we find a ‘hump’ in the temperature-dependent linear conductance and a nonzero-
bias maximum in the differential conductance. These peculiar behaviours are associated with
the fact that the Kondo peak of the QD is split and shifted away from the Fermi level in the
case of the P alignment. Furthermore, we suggest that the TMR is a more effective tool to
explore the different features of the Kondo resonance in different configurations.

Finally, we point out again the applicability of the NCA approach to the FM/QD/FM
systems. No spin splitting in the case of the AP alignment guarantees that the NCA is a
reliable approximation for quantities involving the DOS. For the P configuration our numerical
results for the DOS show satisfactory agreement with previous EOM predictions in the case of
weak polarization p = 0.2. Thus we believe that the self-consistent second-order perturbation
approach provides some qualitative features of the Kondo effect in the DOS, as long as the
polarizations of the leads are weak enough, which can serve to furnish a deeper understanding
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of transport properties in FM/QD/FM systems. Advanced NCA studies containing vertex
corrections are required to examine the validity of this approach. Work along this line is in
progress.
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